The Complexity of Generalized Satisfiability for Linear Temporal Logic

نویسندگان

  • Michael Bauland
  • Thomas Schneider
  • Henning Schnoor
  • Ilka Schnoor
  • Heribert Vollmer
چکیده

In a seminal paper from 1985, Sistla and Clarke showed that satisfiability for Linear Temporal Logic (LTL) is either NP-complete or PSPACE-complete, depending on the set of temporal operators used. If, in contrast, the set of propositional operators is restricted, the complexity may decrease. This paper undertakes a systematic study of satisfiability for LTL formulae over restricted sets of propositional and temporal operators. Since every propositional operator corresponds to a Boolean function, there exist infinitely many propositional operators. In order to systematically cover all possible sets of them, we use Post’s lattice. With its help, we determine the computational complexity of LTL satisfiability for all combinations of temporal operators and all but two classes of propositional functions. Each of these infinitely many problems is shown to be either PSPACE-complete, NP-complete, or in P. 2000 ACM Subject Classification: F.4.1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Computational Complexity of Satisfiability of Temporal Horn Formulas in Propositional Linear-Time Temporal Logic

Since the invention of Prolog, a programming language based on classical first-order logic, many people have tried to extend it using similiar ideas and redefine the semantics of the extended Prolog in terms of nonclassical logics [3,5,81. The success of a programming language based on nonclassical logics usually lies in the new definiton of Horn formulas and SLD-resolution-like inference rule....

متن کامل

Metric Temporal Logic Translations over the Naturals

We study translations from Metric Temporal Logic (MTL) over the natural numbers to Linear Temporal Logic (LTL). In particular, we present two approaches for translating from MTL to LTL which preserve the EXPSPACE complexity of the satisfiability problem for MTL. Our translations, thus, allow us to utilise LTL provers to solve MTL satisfiability problems.

متن کامل

Complexity of propositional Linear-time Temporal Logic with finitely many variables

We prove that model-checking and satisfiability problems for propositional Linear-time Temporal Logic with a single variable are PSPACE-complete.

متن کامل

Some Recent Results in Metric Temporal Logic

Metric Temporal Logic (MTL) is a widely-studied real-time extension of Linear Temporal Logic. In this paper we survey results about the complexity of the satisfiability and model checking problems for fragments of MTL with respect to different semantic models. We show that these fragments have widely differing complexities: from polynomial space to non-primitive recursive and even undecidable. ...

متن کامل

Automata: from logics to algorithms

We review, in a unified framework, translations from five different logics—monadic second-order logic of one and two successors (S1S and S2S), linear-time temporal logic (LTL), computation tree logic (CTL), and modal μ-calculus (MC)—into appropriate models of finite-state automata on infinite words or infinite trees. Together with emptiness-testing algorithms for these models of automata, this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2006